Golan Yona

Introduction to Computational Proteomics
Acknowledgments

I would like to thank the following people for their help in reviewing chapters of this book and providing useful comments: Ran El-Yaniv, Nir Kalisman, Klara Kedem, Danny Barash, Yoram Gdalyahu, Sergio Moreno, Peter Mirani, Dahlia Weiss, Adelene Sim, Assaf Oron and Fengzhu Sun.

Certain sections of this book are based on joint research with my former students, and I would like to thank them for their contributions: Itai Sharon, Liviu Popescu, Chin-Jen Ku, Niranjan Nagarajan, Helgi Ingolfsson, Umar Syed, Michael Quist, Richard Chung, Shafquat Rahman, William Dirks, Aaron Birkland, Paul Shafer and Timothy Isganitis.

To Michael Levitt, for his continuous encouragement and support over the years. To Jawahar Sudhamsu, for his kind help with many figures and his invaluable friendship.
Contents

I The Basics 1

1 What Is Computational Proteomics? 3
1.1 The complexity of living organisms 3
1.2 Proteomics in the modern era 4
1.3 The main challenges in computational proteomics 5
 1.3.1 Analysis of individual molecules 5
 1.3.1.1 Sequence analysis 5
 1.3.1.2 Structure analysis 6
 1.3.2 From individual proteins to protein families 6
 1.3.3 Protein classification, clustering and embedding 7
 1.3.4 Interactions, pathways and gene networks 7

2 Basic Notions in Molecular Biology 9
2.1 The cell structure of organisms 9
2.2 It all starts from the DNA 10
2.3 Proteins 12
2.4 From DNA to proteins 15
2.5 Protein folding - from sequence to structure 18
2.6 Evolution and relational classes in the protein space 20
2.7 Problems 22

3 Sequence Comparison 23
3.1 Introduction 23
3.2 Alignment of sequences 24
 3.2.1 Global sequence similarity 25
 3.2.1.1 Calculating the global similarity score 26
 3.2.2 Penalties for gaps 27
 3.2.2.1 Linear gap functions 28
 3.2.3 Local alignments 29
 3.2.3.1 Calculating the local similarity score 30
3.3 Heuristic algorithms for sequence comparison 31
3.4 Probability and statistics of sequence alignments 32
 3.4.1 Basic random model 33
 3.4.2 Statistics of global alignment 33
4 Multiple Sequence Alignment, Profiles and Partial Order Graphs 105

4.1 Dynamic programming in N dimensions 106
4.1.1 Scoring functions 107
4.2 Classical heuristic methods 108
4.2.1 Star alignment .. 109
4.2.2 Tree alignment 110
4.3 MSA representation and scoring 113
4.3.1 The consensus sequence of an MSA 113
4.3.2 Regular expressions 114
4.3.3 Profiles and position-dependent scores 116
4.3.3.1 Generating a profile 116
4.3.3.2 Pseudo-counts 117
4.3.3.3 Weighting sequences 122
4.3.4 Position-specific scoring matrices 126
4.3.4.1 Using PSSMs with the dynamic programming algorithm 128
4.3.5 Profile-profile comparison 128
4.4 Iterative and progressive alignment 132
4.4.1 PSI-BLAST - iterative profile search algorithm 132
4.4.2 Progressive star alignment 136
4.4.3 Progressive profile alignment 137
4.5 Transitive alignment 138
4.5.1 T-coffee .. 139
4.6 Partial order alignment 141
4.6.1 The partial order MSA model 142
4.6.2 The partial order alignment algorithm 144
4.7 Further reading ... 148
4.8 Conclusions .. 149
4.9 Problems .. 150

5 Motif Discovery 155

5.1 Introduction ... 155
5.2 Model-based algorithms 156
5.2.1 The basic model 157
5.2.2 Model quality .. 158
5.2.2.1 Case 1: model unknown, patterns are unknown 159
5.2.2.2 Case 2: model is given, patterns are unknown 160
5.3 Searching for good models 160
5.3.1 The Gibbs sampling algorithm 161
5.3.1.1 Improvements 162
5.3.2 The MEME algorithm 162
6.4.2.5 Sparse Markov transducers

227

6.4.2.6 Prediction by partial matches

229

6.5 Further reading

231

6.6 Conclusions

232

6.7 Problems

233

7 Classifiers and Kernels

235

7.1 Generative models vs. discriminative models

235

7.2 Classifiers and discriminant functions

237

7.2.1 Linear classifiers

238

7.2.2 Linearly separable case

241

7.2.3 Maximizing the margin

244

7.2.4 The non-separable case - soft margin

246

7.2.5 Non-linear discriminant functions

249

7.2.5.1 Mercer kernels

253

7.3 Applying SVMs to protein classification

255

7.3.1 String kernels

256

7.3.1.1 Simple string kernel - the spectrum kernel

256

7.3.1.2 The mismatch spectrum kernel

257

7.3.2 The pairwise kernel

257

7.3.3 The Fischer kernel

258

7.3.4 Mutual information kernels

259

7.4 Decision trees

262

7.4.1 The basic decision tree model

263

7.4.2 Training decision trees

264

7.4.2.1 Impurity measures for multi-valued attributes

267

7.4.2.2 Missing attributes

268

7.4.2.3 Tree pruning

268

7.4.3 Stochastic trees and mixture models

270

7.4.4 Evaluation of decision trees

272

7.4.4.1 Handling skewed distributions

274

7.4.5 Representation and feature extraction

275

7.4.5.1 Feature processing

276

7.4.5.2 Dynamic attribute filtering

277

7.4.5.3 Binary splitting

278

7.5 Further reading

279

7.6 Conclusions

280

7.7 Appendix - estimating the significance of a split

281

7.8 Problems

288
8 Protein Structure Analysis

8.1 Introduction .. 291
8.2 Structure prediction - the protein folding problem 293
 8.2.1 Protein secondary structure prediction 296
 8.2.1.1 Secondary structure assignment 297
 8.2.1.2 Secondary structure prediction 299
 8.2.1.3 Accuracy of secondary structure prediction 301
8.3 Structure comparison .. 303
 8.3.1 Algorithms based on inter-atomic distances 305
 8.3.1.1 The RMSd measure 305
 8.3.1.2 The strucral algorithm 309
 8.3.1.3 The URMS distance 311
 8.3.1.4 The URMS-RMS algorithm 312
 8.3.2 Distance matrix based algorithms 318
 8.3.2.1 Dali 319
 8.3.2.2 CE 322
 8.3.3 Geometric hashing 324
 8.3.4 Statistical significance of structural matches 327
 8.3.5 Evaluation of structure comparison 330
8.4 Generalized sequence profiles - integrating secondary structure with sequence information 332
8.5 Further reading ... 336
8.6 Conclusions ... 339
8.7 Appendix - minimizing RMSd 340
8.8 Problems ... 342

9 Protein Domains .. 345

9.1 Introduction ... 345
9.2 Domain detection ... 348
 9.2.1 Domain prediction from 3D structure 349
 9.2.2 Domain analysis based on predicted measures of structural stability 351
 9.2.3 Domain prediction based on sequence similarity search 355
 9.2.4 Domain prediction based on multiple sequence alignments 361
9.3 Learning domain boundaries from multiple features 364
 9.3.1 Feature optimization 365
 9.3.2 Scaling features 366
 9.3.3 Post-processing predictions 366
 9.3.4 Training and evaluation of models 369
9.4 Testing domain predictions 370
 9.4.1 Selecting more likely partitions 373
 9.4.1.1 Computing the prior $P(D)$ 375
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10.7</td>
<td>Further reading</td>
<td>448</td>
</tr>
<tr>
<td>10.8</td>
<td>Conclusions</td>
<td>450</td>
</tr>
<tr>
<td>10.9</td>
<td>Appendix - cross-validation tests</td>
<td>451</td>
</tr>
<tr>
<td>10.10</td>
<td>Problems</td>
<td>457</td>
</tr>
<tr>
<td>11.1</td>
<td>Introduction</td>
<td>459</td>
</tr>
<tr>
<td>11.2</td>
<td>Structure preserving embedding</td>
<td>461</td>
</tr>
<tr>
<td>11.2.1</td>
<td>Maximal variance embeddings</td>
<td>461</td>
</tr>
<tr>
<td>11.2.1.1</td>
<td>Principal component analysis</td>
<td>462</td>
</tr>
<tr>
<td>11.2.1.2</td>
<td>Singular value decomposition</td>
<td>467</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Distance preserving embeddings</td>
<td>467</td>
</tr>
<tr>
<td>11.2.2.1</td>
<td>Multidimensional scaling</td>
<td>468</td>
</tr>
<tr>
<td>11.2.2.2</td>
<td>Embedding through random projections</td>
<td>474</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Manifold learning - topological embeddings</td>
<td>478</td>
</tr>
<tr>
<td>11.2.3.1</td>
<td>Embedding with geodesic distances</td>
<td>479</td>
</tr>
<tr>
<td>11.2.3.2</td>
<td>Preserving local neighborhoods</td>
<td>482</td>
</tr>
<tr>
<td>11.2.3.3</td>
<td>Distributional scaling</td>
<td>484</td>
</tr>
<tr>
<td>11.3</td>
<td>Setting the dimension of the host space</td>
<td>488</td>
</tr>
<tr>
<td>11.4</td>
<td>Vectorial representations</td>
<td>490</td>
</tr>
<tr>
<td>11.4.1</td>
<td>Internal representations</td>
<td>492</td>
</tr>
<tr>
<td>11.4.2</td>
<td>Collective and external representations</td>
<td>493</td>
</tr>
<tr>
<td>11.4.2.1</td>
<td>Choosing a reference set and an association measure</td>
<td>494</td>
</tr>
<tr>
<td>11.4.2.2</td>
<td>Transformations and normalizations</td>
<td>495</td>
</tr>
<tr>
<td>11.4.2.3</td>
<td>Noise reduction</td>
<td>495</td>
</tr>
<tr>
<td>11.4.2.4</td>
<td>Comparing distance profiles</td>
<td>496</td>
</tr>
<tr>
<td>11.4.2.5</td>
<td>Distance profiles and mixture models</td>
<td>500</td>
</tr>
<tr>
<td>11.5</td>
<td>Further reading</td>
<td>502</td>
</tr>
<tr>
<td>11.6</td>
<td>Conclusions</td>
<td>503</td>
</tr>
<tr>
<td>11.7</td>
<td>Problems</td>
<td>504</td>
</tr>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>505</td>
</tr>
<tr>
<td>12.2</td>
<td>Microarrays</td>
<td>509</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Datasets</td>
<td>512</td>
</tr>
<tr>
<td>12.3</td>
<td>Analysis of individual genes</td>
<td>513</td>
</tr>
<tr>
<td>12.4</td>
<td>Pairwise analysis</td>
<td>515</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Measures of expression similarity</td>
<td>517</td>
</tr>
<tr>
<td>12.4.1.1</td>
<td>Shifts</td>
<td>520</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Missing data</td>
<td>521</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Correlation vs. anti-correlation</td>
<td>523</td>
</tr>
<tr>
<td>12.4.4</td>
<td>Statistical significance of expression similarity</td>
<td>524</td>
</tr>
</tbody>
</table>
12.4.5 Evaluating similarity measures 527
 12.4.5.1 Estimating baseline performance 528
12.5 Cluster analysis and class discovery 529
 12.5.1 Validating clustering results 534
 12.5.2 Assessing individual clusters 536
 12.5.3 Enrichment analysis 538
 12.5.3.1 The gene ontology 538
 12.5.3.2 Gene set enrichment 541
 12.5.4 Limitations of mRNA arrays 544
12.6 Protein arrays .. 545
 12.6.1 Mass-spectra data 546
12.7 Further reading .. 548
12.8 Conclusions .. 550
12.9 Problems ... 551

13 Protein-Protein Interactions 553
13.1 Introduction .. 553
13.2 Experimental detection of protein interactions 556
 13.2.1 Traditional methods 557
 13.2.1.1 Affinity chromatography 557
 13.2.1.2 Co-immunoprecipitation 558
 13.2.2 High-throughput methods 558
 13.2.2.1 The two-hybrid system 558
 13.2.2.2 Tandem affinity purification 560
 13.2.2.3 Protein arrays 561
13.3 Prediction of protein-protein interactions 561
 13.3.1 Structure-based prediction of interactions 562
 13.3.1.1 Protein docking and prediction of interaction sites 563
 13.3.1.2 Extensions to sequences of unknown structures 567
 13.3.2 Sequence-based inference 568
 13.3.2.1 Gene preservation and locality 568
 13.3.2.2 Co-evolution analysis 571
 13.3.2.3 Predicting the interaction interface 578
 13.3.2.4 Sequence signatures and domain-based prediction 582
 13.3.3 Gene co-expression 589
 13.3.4 Hybrid methods 589
 13.3.5 Training and testing models on interaction data .. 591
13.4 Interaction networks 592
 13.4.1 Topological properties of interaction networks .. 593
 13.4.2 Applications 601
13.4.3 Network motifs and the modular organization of networks 602
13.5 Further reading ... 605
13.6 Conclusions .. 607
13.7 Appendix - DNA amplification and protein expression 608
 13.7.1 Plasmids .. 608
 13.7.2 SDS-PAGE ... 608
13.8 Appendix - the Pearson correlation .. 610
 13.8.1 Uneven divergence rates ... 610
 13.8.2 Insensitivity to the size of the dataset 610
 13.8.3 The effect of outliers ... 611
13.9 Problems .. 613

14 Cellular Pathways 615
14.1 Introduction ... 615
14.2 Metabolic pathways .. 618
14.3 Pathway prediction ... 621
 14.3.1 Metabolic pathway prediction ... 621
 14.3.2 Pathway prediction from blueprints ... 623
 14.3.2.1 The problem of pathway holes ... 623
 14.3.2.2 The problem of ambiguity ... 623
 14.3.3 Expression data and pathway analysis 624
 14.3.3.1 Deterministic gene assignments ... 626
 14.3.3.2 Fuzzy assignments .. 629
 14.3.4 From model to practice ... 632
14.4 Regulatory networks: modules and regulation programs 635
14.5 Pathway networks and the minimal cell ... 640
14.6 Further reading .. 642
14.7 Conclusions .. 645
14.8 Problems .. 646

15 Learning Gene Networks with Bayesian Networks 649
15.1 Introduction ... 649
 15.1.1 The basics of Bayesian networks .. 650
15.2 Computing the likelihood of observations 654
15.3 Probabilistic inference ... 655
 15.3.1 Inferring the values of variables in a network 656
 15.3.2 Inference of multiple unknown variables 660
15.4 Learning the parameters of a Bayesian network 661
 15.4.1 Computing the probability of new instances 666
 15.4.2 Learning from incomplete data .. 667
15.5 Learning the structure of a Bayesian network 669
 15.5.1 Alternative score functions ... 672
15.5.2 Searching for optimal structures 674
 15.5.2.1 Greedy search 675
 15.5.2.2 Sampling techniques 675
 15.5.2.3 Model averaging 676
15.5.3 Computing the probability of new instances 678
15.6 Learning Bayesian networks from microarray data 678
15.7 Further reading . 682
15.8 Conclusions . 683
15.9 Problems . 684

References 687

Conference Abbreviations 733

Acronyms 735

Index 738
Preface

Computational molecular biology, or simply computational biology, is a term generally used to describe a broad set of techniques, models and algorithms that are applied to problems in biology. This is a relatively new discipline that is rooted in two different disciplines: computer science and molecular biology. Being on the border line between the two disciplines, it is related to fields of intensive research in both. The goal of this book is to introduce the field of computational biology through a focused approach that tackles the different steps and problems involved with protein analysis, classification and meta-organization. Of special interest are problems related to the study of protein-based cellular networks. All these tasks constitute what is referred to as computational proteomics.

This is a broad goal, and indeed the book covers a variety of topics. The first part covers methods to identify the building blocks of the protein space, such as motifs and domains, and algorithms to assess similarity between proteins. This includes sequence and structure analysis, and mathematical models (such as hidden Markov models and support vector machines) that are used to represent protein families and classify new instances. The second part covers methods that explore higher order structure in the protein space, through the application of unsupervised learning algorithms, such as clustering and embedding. The third part discusses methods that explore and unravel the broader context of proteins, such as prediction of interactions with other molecules, transcriptional regulation and reconstruction of cellular pathways and gene networks.

The book is structured also based on the type of the biological data analyzed. It starts with the analysis of individual entities, and works its way up through the analysis of more complex entities. The first chapters provide a brief introduction to the molecular biology of the main entities that are of interest when studying the protein space, and an overview of the main problems we will focus on. These are followed by a chapter on pairwise sequence alignment, including rigorous and heuristic algorithms, and statistical assessment of sequence similarity. Next we discuss algorithms for multiple sequence alignment, as well as generative and discriminative models of protein families. We proceed to discuss motif detection, domain prediction and protein structure analysis. All these algorithms and models are elemental to the methods that are discussed in the next couple of chapters on clustering, embedding and protein classification. The last several chapters are devoted to the analysis of the broader biological context of proteins, which is essential to fully and ac-
curately characterize proteins and their cellular counterparts. This includes
gene expression analysis, prediction and analysis of protein-protein interac-
tions, and the application of probabilistic models to study pathways, gene
networks and causality in cells.

The book is intended for computer scientists, statisticians, mathematicians
and biologists. The goal of this book is to provide a coherent view of the
field and the main problems involved with the analysis of complex biologi-
cal systems and specifically the protein space. It offers rigorous and formal
descriptions, when possible, with detailed algorithmic solutions and models.
Each chapter is followed by problem sets from courses the author has taught
at Cornell University and at the Technion, with emphasis on a practical ap-
proach. Basic background in probability and statistics is assumed, but is also
provided in an appendix to Chapter 3. Knowledge of molecular biology is not
required, but we highly recommend referring to a specialized book in molecu-
lar biology or biochemistry for further information (for a list of recommended
books, see the book’s website at biozon.org/proteomics/)

It should be noted that the interaction of computer science and molecular
biology as embodied in computational biology is not a one way street. In this
book we focus on algorithms and models and their application to biological
problems. The opposite scenario, where biological systems are used to solve
mathematical problems (as in DNA computing), is also of interest; however
it is outside the scope of this book. Nevertheless, it is fascinating to see how
biology affects the way we think, by introducing new concepts and new models
of computation (well known examples include neural networks and genetic
algorithms). This interaction invigorates fields like statistics and computer
science and triggers the development of new models and algorithms that have
a great impact on other fields of science as well.

Before we start, we should mention the term Bioinformatics, which is
equivalent to computational biology. Some make a distinction and use the
term computational biology to refer to the development of novel algorithms
and models to solve biological problems, while Bioinformatics is used to re-er to the application of these algorithms to biological data. However, this
difference in semantics is somewhat fuzzy, and practically the terms are used
interchangeably.