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This paper presents a novel approach to pro®le-pro®le comparison. The
method compares two input pro®les (like those that are generated by
PSI-BLAST) and assigns a similarity score to assess their statistical simi-
larity. Our pro®le-pro®le comparison tool, which allows for gaps, can be
used to detect weak similarities between protein families. It has also been
optimized to produce alignments that are in very good agreement with
structural alignments. Tests show that the pro®le-pro®le alignments are
indeed highly correlated with similarities between secondary structure
elements and tertiary structure. Exhaustive evaluations show that our
method is signi®cantly more sensitive in detecting distant homologies
than the popular pro®le-based search programs PSI-BLAST and
IMPALA. The relative improvement is the same order of magnitude
as the improvement of PSI-BLAST relative to BLAST. Our new tool
often detects similarities that fall within the twilight zone of sequence
similarity.
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Introduction

Traditionally, database searches have been the
means by which new protein sequences are ana-
lyzed. The query sequence is compared with each
individual sequence of the database, one at a time,
in what is termed a pairwise comparison. Signi®-
cant sequence similarities with database sequences
may imply a common evolutionary ancestry (hom-
ology) between the corresponding proteins. Hom-
ologous sequences usually have similar fold and
close or related biological function,1,2 therefore,
detecting homology can help to assign a putative
function to a new protein sequence.

Pairwise sequence comparison algorithms are
useful to detect similarities between sequences that
have not diverged greatly, beyond the twilight
zone of sequence similarity (de®ned as 20 %-30%
sequence identity3). However, in the coarse of evol-
ution, sequences may have changed signi®cantly
due to mutations and insertions, and in many
cases proteins may still have the same fold and
close biological function without a signi®cant
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sequence similarity.4 ± 6 Those similarities are
usually missed by pairwise sequence comparisons.

A great deal of work has been done to develop
tools that can detect weak relationships among
sequences. Among these are search programs that
use statistical representations of protein families,
such as pro®les7 and hidden Markov models
(HMM)8 and the latest generation of powerful iter-
ated search programs such as PSI-BLAST9 and
SAM-T98,10 that use signi®cant hits detected in the
®rst iteration to create a pro®le or HMM. The
model is then used to search the database again,
repeatedly, until no more new hits are detected.
The underlying idea in all these techniques is that
by integrating the information from multiple,
related sequences, one can achieve a concise,
robust and powerful statistical representation of a
protein family. These tools were able to enhance
the ability to detect relationships between distantly
related proteins and became the standard means
by which sequences are analyzed these days.

Nonetheless, even iterative tools such as PSI-
BLAST may miss weak sequence similarities.
Moreover, these tools are sensitive to parameter
tuning. For example, using a permissive threshold
for inclusion in a pro®le may cause the inclusion of
unrelated sequences in the pro®le and lead to
diversion from the original query sequence. There-
# 2002 Elsevier Science Ltd.
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fore, users are often forced to use more stringent
thresholds at the cost of sensitivity.

There are other related methods that can be
quite effective in the twilight zone of sequence
similarity. These methods are especially tuned to
detect similarities with sequences of known struc-
tures, and most of them integrate additional infor-
mation (e.g. predicted secondary structure,
structural information) in the process. Such
methods were applied successfully in the latest
CASP (critical assessment of structure prediction)
meeting{. For example, PDB-BLAST11 is a variation
on the PSI-BLAST program. PSI-BLAST is used to
collect the protein sequences belonging to a par-
ticular family. Using the supplied query sequence,
PSI-BLAST runs for ®ve iterations. A pro®le is gen-
erated from this collection but in a different way
than done in PSI-BLAST. The sequence pro®le is
then saved and used to scan the database of pro-
teins with known structure. SAM-T9912 is a vari-
ation on SAM-T98 that builds a multiple alignment
by iterated search using hidden Markov models. It
uses the alignment to predict secondary structure
(using various methods) and to build a HMM that
is then used to search the PDB for similar proteins.
A library of HMMs built by similar methods from
PDB sequences is used to score the target sequence.
INBGU13 is a combination of ®ve methods that
exploit sequence and structure information in
different ways to produce one consensus predic-
tion. It uses predicted versus observed secondary
structure and sequence pro®les for both the query
and for the folds in the library. GenTHREADER14

uses a combination of various methods including
sequence alignment with structure based scoring
functions. It uses a neural network based jury sys-
tem to calculate the ®nal score for the alignment.
3D-PSSM15 is based on a threading approach using
1D and 3D pro®les coupled with secondary struc-
ture and solvation potentials. The current version
of this server uses a fold library, which is automati-
cally updated every week.

Although it seems that PSI-BLAST and similar
procedures already exploit the maximum infor-
mation that is encoded in the sequence, we believe
that this information has not been fully utilized
yet. All the aforementioned methods compare a
sequence to a model as encoded in a template;
their power stems from the ability of such a model
to better discern related from unrelated proteins.
Our approach takes this idea one step further and
compares two models. Speci®cally, we use the pro-
®le representation (as is generated by PSI-BLAST)
as a statistical model of a protein family, and com-
pare pro®les of different protein families, in search
of possible remote kinship.

The choice of the model can greatly affect the
effectiveness of the method. For example, a statisti-
cal model for the sequences such as a HMM makes
certain assumptions on the origin and diversity of
{ http://predictioncenter.unl.gov/casp4/Casp4.html
the sequences that are not always justi®ed.
Methods that make minimal assumptions about
the nature of sequences are desirable, as such
methods can be more robust. In our choice of the
model and the statistical similarity measure we
have tried to follow this guideline.

Several procedures to compare pro®les have
been reported in the literature. Gotoh16 proposed
an iterative alignment method to align two groups
of biological sequences, including pro®le-based
operations. However, his method is based on opti-
mizing a weighted sum-of-pairs score, and essen-
tially compares pairs of sequences, with overall
computation time that is proportional to the pro-
duct of the numbers of sequences in the two
groups. Pietrokovski17 compared pro®les that were
generated from multiple alignments of protein
families in the Blocks database,18 but his method
does not allow gaps in the alignment. Lyngso
et al.19 used the co-emission probability of two pro-
®le hidden Markov models to measure their simi-
larity. Despite the mathematical elegance of their
approach, the metrics that they propose are overly
sensitive to the differences between the probability
distributions and to the size of the training data. In
other words, their metrics emphasize the differ-
ences rather than the similarity of the two models.
Therefore, it is not clear whether the method can
detect subtle similarities between protein families.
The most similar effort to ours was done by
Rychlewski, Godzik, and colleagues.20,21 Their pro-
®le-pro®le comparison procedure is based on a
dynamic programming algorithm. Their algorithm
uses the correlation of probability distributions as
a measure of similarity between pro®le columns.
Their method (called FFAS) was applied success-
fully in the last CASP meeting.

Our algorithm for pro®le-pro®le comparison is
based on the classical dynamic programming
algorithm ®rst used for protein sequences almost
30 years ago21 with the modi®cation to allow for
local similarities.22 The novel ingredient in our pro-
cedure is the de®nition of pro®le similarity scores.
Our scores are based on a powerful, information
theory based, measure of similarity between prob-
ability distributions. The similarity measure is
based only on the observed distributions and
therefore provides a model independent criterion
for comparing two statistical sources. The simi-
larity score of two columns in two different pro-
®les is de®ned as a combination of their statistical
similarity and the signi®cance of the statistical
similarity. A transformation is then applied to
these scores, so as to make them suitable for
detecting local sequence similarities.

The paper is organized as follow: we ®rst
describe the methods and the similarity measures
that we use. Then we evaluate the performance of
the new tool by testing it on a large set of protein
families. We end with selected examples that
demonstrate the power of the pro®le-pro®le com-
parison method.
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Methods

Definition of a profile

A pro®le is a representation of a group of related
protein sequences, usually based on a multiple
alignment of those sequences (reviews on algor-
ithms for multiple alignment23 ± 25). Once the
multiple alignment is de®ned, the pro®le is con-
structed by counting the numbers of each amino
acid at each position along the multiple alignment.
These counts are transformed into probabilities by
normalizing the counts by the total number of
amino acids and gaps observed at that position.
These empirical probabilities re¯ect the likelihood
of observing any amino acid k at position i. Since
the counts are based on a ®nite set of sequences it
can happen that not all 20 amino acids are
observed at each position. Therefore, pseudo
counts are introduced so that no amino acid has a
zero probability to occur at position i. For more
information on pro®le generating techniques, see
Gribskov & Veretnik.26

Iterative search procedures such as PSI-BLAST9

can also be used to generate multiple alignments
and pro®les. PSI-BLAST, arguably the most popu-
lar search method today, is an iterative version of
BLAST, with a position-speci®c scoring matrix,
which is generated from signi®cant alignments
found in round i and used in round i � 1.

Once the probability distributions have been
calculated for each position along the multiple
alignment the pro®le is de®ned as a series of prob-
ability distributions (one per each position)
P � p1p2 � �pn where n is the length of the multiple
alignment, and pi is a probability distribution over
the 20 amino acids at position i. One can think of
the pro®le as a (k,i) matrix of 20 rows and n col-
umns. Each probability distribution is one column
in the matrix representation and hence is called
pro®le column.

The data set

There are several publicly available classi®-
cations of protein architectures including SCOP,27

CATH28 and FSSP/DALI.29 These classi®cations
provide excellent sets for testing protein
sequence and structure comparison algorithms.
Whereas SCOP is built by the careful manual
curation of Dr Alexei Murzin, both CATH and
FSSP are built more or less automatically from
structural alignments. CATH has a rather simple
hierarchy with just four fold classes and a few
tens of architectures in each class. SCOP has a
much more complicated hierarchy with sevenfold
classes, some containing over a 100-folds. The
FSSP classi®cation is automatic with a hierarchy
built by the Z-score similarity of proteins in
each branch of the tree. While the CATH and
FSSP classi®cations use protein chains as the
object of interest, SCOP breaks proteins into
domains as required, thus eliminating the pro-
blem of placing multi-domain proteins in the
hierarchy. Our choice of the SCOP classi®cation
was motivated by the high quality of this data-
base, the use of domains instead of complete
protein chains, and our extensive experience
with this database for sequence and structure
classi®cations.30 ± 32

We use the SCOP 1.50 classi®cation of protein
structures; This manually curated database con-
tains 23,780 protein domains classi®ed into 1287
protein families, 814 superfamilies, 545 folds and
seven classes. Each of the 1287 families is rep-
resented by a pro®le that is generated using PSI-
BLAST. We ®rst select as a seed the sequence
whose average distance from all the other mem-
bers in the family is the smallest. Then we use PSI-
BLAST to run this seed sequence against the
sequences in the family, after eliminating identical
entries. Families for which there is only one mem-
ber, or for which PSI-BLAST failed to generate a
pro®le, were represented by a pro®le generated
directly from the seed sequence by using prob-
abilities derived from the original BLOSUM62
frequency matrix.33

It is well known that a general PSI-BLAST search
is very sensitive to the program parameters
(threshold for inclusion in the pro®le, number of
iterations). An iterative PSI-BLAST search may
overestimate the statistical signi®cance of matches
with unrelated sequences, as a result of integrating
unrelated sequences into the pro®le. Our PSI-
BLAST results are somewhat cleaner than those
from a typical PSI-BLAST search. The seed
sequence is searched only against the other mem-
bers of the family (the ``database''). Since there are
no unrelated sequences in the database, there is no
danger that false positives will be included in the
pro®le. Therefore, our procedure creates a clean
pro®le that reliably represents the protein family
and is less error-prone than pro®les that are gener-
ated by an iterative PSI-BLAST search against a
large sequence database.

For parameter optimization and performance
evaluation we used a subset of 456 families. Those
are all families within superfamilies that contain at
least two other families (the largest superfamily,
the ``Winged helix'' DNA-binding domain, con-
tains 21 families). Approximately one-quarter of
those families (120 families, each with at least six
members after eliminating redundancy, and with a
seed sequence longer than 50 amino acids) were
chosen as the training set for parameter optimiz-
ation (see below).

Profile-profile comparison

The pro®le-pro®le comparison is performed
using dynamic programming algorithm, and the
alignment is assigned a score that accounts for
matches, insertions and deletions, much in the
same way sequence-sequence alignment is calcu-
lated. The differences are in the scoring scheme.
Unlike sequence-sequence comparison, where a



Figure 1. (a) Distributions of divergence scores and signi®cance scores (a) and of similarity scores (b). All distri-
butions are based on the largest 100 families in the SCOP 1.50 database. For each family a pro®le was generated (see
Methods) and the divergence score DJS, the signi®cance score S and the similarity score were calculated for every
pair of columns along the pro®le, giving a total of 2986,151 column pairs.
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scoring matrix like BLOSUM62 gives the score
for different pairs of aligned amino acids, pro-
®le-pro®le comparison is more complicated. The
core of our procedure is the de®nition of pro®le
similarity scores, and the parameters used to
quantify this measure of similarity. Our scheme
has been described before, but in much less
detail.34,35

The divergence score

Given two pro®les P � p1p2p3 � � �pn and
Q � q1q2q3 � � �qm, where n and m are the lengths of
the pro®les (the number of positions or columns)
and pi, qj are probability distributions over the 20
letter alphabet of amino acids, we de®ne the match
score between two columns pi and qj based on
their statistical similarity.

A commonly used measure of statistical simi-
larity between two arbitrary probability distri-
butions pi(x) and qj(x), is the Kullback-Leibler (KL)
divergence36 de®ned as:

DKL�pijjqj� �
X

k

pik log2

pik

qjk

This measure has the disadvantages of being asym-
metric and unbounded. A better measure of
statistical similarity is the Jensen-Shannon (JS)
divergence between probability distributions.37
{ This in itself is not enough to determine common
ancestry, the same way that similarity or identity of two
amino acids along a sequence alignment is not enough
to determine kinship. Only the overall similarity score
of the alignment may indicate such kinship. In that case
a pro®le that consists of the common source
distributions (along the alignment) can be considered as
a faithful representation of the common ancestry.
Given two (empirical) probability distributions p
and q, for every 0 4 l 4 1, the l-JS divergence is
de®ned as:

DJS
l �pjjq� � lDKL�pjjr� � �1ÿ l�DKL�qjjr�

where:

r � lp� �1ÿ l�q
can be considered as the most likely common
source distribution of both distributions p and q,
with l as a prior weight. Without a priori infor-
mation, a natural choice is l � 1/2. We call the
corresponding measure the divergence score and
denote it by DJS. This measure is symmetric and
ranges between 0 and 1, where the divergence for
identical distributions is 0. In Figure 1(a) we plot
the distribution of DJS for actual amino acid distri-
butions in pro®les of groups of related proteins.

An attractive feature of the DJS divergence
measure is that it is proportional to minus logar-
ithm of the probability that the two empirical dis-
tributions represent samples drawn from the same
(``common'') source distribution.38 This aspect of
the similarity measure makes it appealing in the
context of protein sequence comparison, since by
comparing pro®les we wish to detect an evolution-
ary relationship, i.e. a common ancestry. The com-
mon source distribution as de®ned above is the
source distribution most likely to produce the two
distributions that are actually observed for the two
pro®les that are being compared. A small value of
DJS indicates that the two pro®le columns are clo-
sely related, and may be well approximated by the
distribution of the common source{.

The significance score

While a statistical measure estimating the prob-
ability that two distributions represent the same
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source distribution seems appropriate for the com-
parison of pro®les, a major ingredient is ignored;
the a priori probability of the source distribution.
Imagine that the two particular empirical distri-
butions each resembles the overall distribution of
amino acids in the database (i.e. the distribution of
the common source is similar to the background
distribution). In this case, should they be con-
sidered signi®cantly similar? Obviously not, as
they both match the distribution expected for ran-
dom pro®les. Clearly this match is not as signi®-
cant as a match of two probability distributions
that both resemble a unique distribution (i.e. a dis-
tribution different from the overall distribution of
amino acids in the database). In other words,
the similarity of two random distributions is not as
signi®cant as the similarity of two unique
distributions.

To assess the signi®cance score S of a match we
measure the JS divergence of the (common) source
distribution, r, from the base (background) distri-
bution, P0 (de®ned as the overall amino acid distri-
bution in a large sequence database, such as
SWISSPROT � TrEMBL40):

S � DJS�rjjP0�
This measure re¯ects the probability that the
source distribution, r, could have been obtained by
chance. The higher it is, the more distinctive is the
common source distribution, and the lower is the
probability that it could have been obtained by
chance. The distribution of signi®cance scores is
shown in Figure 1(a).

Combining the divergence score and the
significance score in a single similarity score

Because our method uses dynamic programming
to compare pro®les, a match between two columns
needs to be assigned a single score{. This score
should ideally re¯ect both the divergence score
and the signi®cance score. Therefore, we de®ne the
similarity score of two probability distributions p
and q to be:

Score�p;q� � 1

2
�1ÿD��1� S�

� 1

2
�1ÿDJS�pjjq���1�DJS�rjjP0��

With this expression, the similarity score of two
similar distributions (D! 0) whose common
{ One may think of a different framework, in which
these two different scores are treated separately. For
example, use the divergence scores to assess the overall
score of the alignment, and use the signi®cance scores to
assess the overall signi®cance of the alignment.
However, in such scenario, an alignment that is
optimized for the divergence score is not necessarily
optimized for the signi®cance score.
source is far from the background distribution
(S! 1), tends to one. On the other hand, the simi-
larity score of two dissimilar distributions (D! 1)
whose most likely common source distribution
resembles the background distribution (S! 0)
tends to zero. This scoring scheme also dis-
tinguishes two distributions that each are similar
to the background distribution (D! 0 and S! 0,
giving Score � 1/2) from two dissimilar distri-
butions, but whose common source is similar to
the background distribution (D! 1 and S! 0,
giving Score � 0). The distribution of similarity
scores observed in protein families is plotted in
Figure 1(b).

Score transformation - creating a local
alignment scoring scheme

The pro®le similarity scores de®ned in the pre-
vious section range from zero to one. For local
alignments, the similarity function Score(a,b) must
satisfy two requirements: (i) mean(Score(a,b)) < 0
and (ii) max{Score(a,b)} > 0. The ®rst requirement
guarantees that the average score of a random
match is negative (otherwise, an extension of a ran-
dom match would tend to increase its score, con-
tradicting the idea of local similarity). The second
condition means that a match with a positive score
is possible. These criteria are satis®ed by all stan-
dard scoring matrices, such as the BLOSUM and
the PAM matrices.

Our pro®le similarity scores must be adjusted to
meet these requirements. A simple transformation
would be to subtract a constant offset from all
similarity scores. Here we tested this transform-
ation (named shift transformation) extensively. We
also tested a more elaborate transformation
(named mass-conserving transformation), which
has been described elsewhere.35

The shift transformation

The average similarity score calculated for a
large set of pro®le column pairs helps determine
the constant offset for the shift transformation.
Based on the largest 100 families in the SCOP data-
base, this average is 0.42. Such a shift would give a
scoring scheme whose average is zero. However,
the optimum average may well be less than zero,
as is the case for BLOSUM62 matrix, where the
average is ÿ0.95. It has been shown that the stat-
istical properties of matches between random
sequences are very sensitive to the exact average
score value.40,41 Matches that are scored using a
scoring function with zero average may have
unstable properties so that small ¯uctuations may
greatly affect the selectivity of the method. There-
fore, the shift should be higher than 0.42 to insure
selectivity, but it should not be so much higher as
to reduce sensitivity.

To limit the search space we ®rst calculated four
different distributions of similarity scores for a
large sample of pro®le columns (see Figure 2(a);



Figure 2. (a) Distribution of similarity scores for different column types. The distributions are based on the largest
100 families in SCOP 1.50 database. The pairs of pro®le columns are divided into four categories depending on the
nature of the seed amino acids. The categories are: (1) identical columns (a column with itself); (2) different columns
with similar or same seed amino acids; (3) different columns with neutral seed amino acids; and (4) different columns
with dissimilar seed amino acids. (b) Distribution of similarity scores for different columns of BLOSUM62. The dis-
tributions for the BLOSUM62 matrix are derived by ®rst converting the frequencies to probability values. Each col-
umn, which corresponds to the replacement probability of a particular amino acid with all others, is akin to a
column in a pro®le and different columns can be compared using our similarity score. Four distributions are plotted
as for (a). In this case, the ``similar aa'' category does not include the pairs with the same amino acid; these are
counted in the ``identical column'' category.
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the four different distributions correspond to
different column types). The same four distri-
butions were calculated from the original
BLOSUM62 frequency matrix33 (Figure 2(b)).

As Figure 2 shows, around 0.5 there is a clear
distinction between distributions of identical col-
umns (red line) and distributions with dissimilar
seed amino acids (black line). All identical columns
scored at least 0.5, as well as a substantial part of
the distributions with similar seed amino acid. The
same is true for similarity scores of distributions
derived from the BLOSUM62 matrix. In addition,
distributions with mutually neutral seed amino
acids peak at a similarity score around 0.45. In
local alignments one would expect a neutral amino
acid to score close to zero. This indicates that the
shift should lie between 0.42 and 0.5.

To derive a sensitive scoring scheme, the shift
parameter should be de®ned more precisely. In
addition, gap penalties can make the difference
between a sensitive scoring scheme and a mediocre
one, so they also need to be optimized. In Optimiz-
ation of Parameters, below, we embarked upon
extensive tests to de®ne the best set of parameters,
and the best score transformation technique.

Optimization of Parameters

In search of maximal sensitivity

To optimize the parameters we used a test set
from the SCOP database (see above). This set com-
prises of 120 families, each of which has at least
two related families within the same SCOP super-
family. We refer to family-family relationships
within the same superfamily as true relationships
and to all other relationships as false relationships.
Given a speci®c set of parameters, for each family
in the test set we calculate the pro®le-pro®le simi-
larities with all 1287 families. For each family the
results are sorted and we count the number of true
family-family relationships detected before the ®rst
false relationship is detected. Finally, the results
are summed over all families in the test set to give
the total number of true family-family relationships
detected.

A total of 6 � 4 � 4 sets of parameters were
tested, with shift value between 0.43 and 0.5
(values of 0.43, 0.44, 0.45, 0.46, 0.47, 0.5), a gap
opening penalty between 1 and 4 (values of 1, 2, 3,
4), and gap extension penalty between 0.1 and 0.4
(values of 0.1, 0.2, 0.3, 0.4). In keeping with the
BLOSUM62 matrix and the default gap parameters
used by PSI-BLAST we set the gap opening pen-
alty parameter to start at the maximal match value
(here 1.0), and the gap extension penalties to be
one order of magnitude smaller. The results, for
selected sets of parameters, and for the scoring
scheme based on the mass conserving transform-
ation, are given in Figure 3.

The shift transformation did better than the
mass-conserving transformation, performing very
well for several sets of parameters. These sets all
have a shift parameter of 0.45, and have gap pen-
alty pairs (opening, extending) of (2,0.2), (2,0.3),
(2,0.4), (3,0.1), (3,0.2), (3,0.3) and (3,0.4). The best
set of parameters was selected using a second test
described next.



Figure 3. Performance for different sets of par-
ameters. For each set of parameters, we give the num-
ber of true family-family relationships that are detected
before the ®rst erroneous relationship (see the text for
details). Parameter sets with a shift value of 0.5 per-
formed worse than the others and were omitted for
greater clarity.
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In search of maximal accuracy

With our pro®le-pro®le procedure we wish not
only to detect as many relationships as possible
(maximum sensitivity). We would also like to pro-
duce reliable alignments with the highest accuracy.
To assess the quality of pro®le-pro®le alignments
we compared them with structural alignments. The
structural alignments are calculated between the
structures of the family seeds (the same seeds that
were used to generate the pro®les) using two
methods, Structal30 and CE.41

Clearly, the test set of family-family align-
ments should be the same for each set of par-
ameters tested. However, alignments are not
necessarily reported at the same level of signi®-
cance by different sets of parameters. Indeed,
some alignments reported as signi®cant with one
parameter set may not be signi®cant with
another set. To create a consistent set of align-
ments that are considered signi®cant by all sets
tested, one needs a clear de®nition of signi®-
cance. We elaborate on this below. Using such
statistical estimates, we are able to associate
with each raw alignment score an E-value
(expectation value), which is the number of
times such a score would be expected to be
obtained by chance. In our ®nal set of test align-
ments, we consider only alignments that are
reported with E-value 4 1, and take the intersec-
tion of the alignments of all parameter sets as a
common subset of 82 alignments.

Several different indices are used to measure the
quality of a pro®le-pro®le alignment with respect to
a structural alignment (see Figure 4). (a) Naligned is
the overlap index, which is the total number of pos-
itions in the query sequence that are aligned by
both methods, excluding gaps. (b) Qshift is the shift
index, which is the average shift of positions along
the aligned region. (c)Nagreement is the quality index,
which is the number of positions in both alignments
that are in agreement (number of pairs that are
aligned identically in both alignments). This de®nes
the ``correctly aligned'' positions. (d) Qmodeler is the
quality of the alignment from the modeler's point of
view;42 it is the fraction of correctly aligned pos-
itions in the pro®le-pro®le alignment (number of
correctly aligned positions divided by total number
of aligned positions). If we were to build a 3D
model based on pro®le-pro®le alignment, this index
indicates the fraction of the model that would
``agree'' with the structure of the target when it
becomes known. (e) Qdeveloper is the quality of the
alignment from the developer's point of view;42 it is
the fraction of correctly aligned positions in the
structural alignment. All these indices are shown in
Figure 4 for the seven best sets of parameters (see
above).

Since the average length of the pro®le-pro®le
alignment tends to decrease with increasing the
gap opening penalty, Qmodeler clearly increases,
while Qdeveloper decreases (see opposing trends seen
in Figure 4(d) and (e)). A better quality index
should take into account those parts of the struc-
tural alignment that are missed by pro®le-pro®le
alignment as well as parts that are added by the
pro®le-pro®le alignment. We de®ne Qcombined as
the fraction of correctly aligned positions divided
by the total number of positions that are aligned
by either Structal or prof_sim (Figure 4(f)).

Based on these graphs one set of parameters
stands out; that with gap opening penalty of 2 and
gap extension penalty of 0.2. Similar results were
obtained when we used CE instead of Structal. It
should be noted that the differences in perform-
ance between all seven candidate sets of par-
ameters both in terms of accuracy and sensitivity
are relatively marginal, and speci®cally ®ve sets of
parameters provide overall good performance:
(2,0.2), (2,0.3), (2,0.4), (3,0.1) and (3,0.2). With larger
test sets, the parameter pairs (3,0.1) and (2,0.3) per-
formed slightly better in terms of overall sensitivity
(number of true family-family relationships
detected), but produced shorter alignments. We
recommend using the set (2,0.2) because it is
almost as sensitive as the best of these sets, and it
produces relatively longer alignments with overall
slightly better accuracy.

Statistical Significance of Profile-
Profile Matches

In order to distinguish true similarities from ran-
dom matches one need to use a statistical measure
that estimates the probability that a particular
match could have been obtained by chance.
Though statistically signi®cant similarity is neither
necessary nor suf®cient for a biological relation-



Figure 4. Accuracy of pro®le-pro®le alignments. For each candidate set of parameters (see Optimization of Par-
ameters) we measured the quality of the pro®le-pro®le alignments with respect to structural alignments that were
generated using Structal. Several indices of quality, described fully in the text, were used: (a) Naligned; (b) Qshift; (c)
Nagreement; (d) Qmodeler; (e) Qdeveloper; (f) Qcombined.
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ship, it may give us a good indication of such

relationship.
{ Local ungapped alignments were studied intensively
and characterized mathematically and were shown to
follow the extreme-value distribution.40,47,48 However,
introducing gaps in the alignments greatly complicates
their mathematical tractability, and rigorous results have
been obtained only for local alignments without gaps.
Nevertheless, recent studies strongly suggest that the
score of local gapped alignments can be characterized in
the same manner as the score of local ungapped
alignments.
Empirical studies43,44 have shown that the distri-
bution of local gapped similarity scores can be well
approximated by the extreme value distribution45

(though some correction factors may apply46){. To
assess the signi®cance of pro®le-pro®le matches we
established two baseline empirical distributions.

The ®rst is based on matches of pro®les of unre-
lated families (families that belong to different
SCOP classes and do not share signi®cant structur-
al similarity); it can be used to assess the signi®-
cance of a match for any two given pro®les,
without further computations. This distribution is
shown in Figure 5(a). Effectively, this distribution



Figure 5. (a) Distribution of pro®le similarity scores of random pro®les. The distribution is based on a large set
of pro®le-pro®le similarity scores of unrelated families. (b) Distribution of pro®le similarity scores for a speci®c
SCOP family (SCOP ID 1.3.1.3, the two-domain cytochrome c; the distributions for other families resemble this distri-
bution). Both distributions follow an extreme value distribution.
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re¯ects the distribution of similarity scores of ran-
dom pro®les. An extreme-value distribution was
®tted to this distribution, so as to estimate the stat-
istical signi®cance (E-value) for any raw similarity
score.

The second distribution is based on matches of
pro®les of a speci®c family; it provides a better
approach to assess the signi®cance of matches with
the particular pro®le. When calculating the simi-
larity score of a given pro®le with all other pro-
®les, one gets hundreds of scores from pro®les that
are unrelated to the query pro®le. These pro®les
are effectively random, and the corresponding
scores provide a reliable baseline distribution. We
derive for each pro®le the similarity scores with all
other pro®les and ®t an extreme-value distribution
to the resulting distribution of scores, after exclud-
ing high-scoring pro®les (see Figure 5(b)). Based
on the theoretical ®t we estimate the E-value of
raw similarity scores. This approach, which allows
for any unusual properties of the query pro®le
(e.g. unusual amino acid composition) is self-cali-
brated, and has proved to be more accurate and
robust.6,49,50

Performance Evaluation

To evaluate the sensitivity and selectivity of our
algorithm in detecting weak relationships between
protein families, we have checked it against
relationships implied by the SCOP classi®cation.
Our test set is composed of 456 families that have
at least two related families within the same super-
family (see above). This gives a total number of
2492 family-family relationships.

The de®nition of a protein superfamily in the
SCOP database is a collection of protein families
that are considered to be distantly related through
evolution. Proteins that belong to the same super-
family have similar structures and usually have
close or related biological functions,51,52 but
sequence similarity is often not detectable. Moving
up the SCOP hierarchy, protein superfamilies that
belong to the same fold are expected to share sub-
structures. In some cases even proteins of different
folds within the same class may show some struc-
tural similarity. Even belonging to different classes
does not necessarily imply that the proteins cannot
be structurally similar as most SCOP classes share
secondary structure elements. Out of the seven
classes in SCOP (all-alpha, all-beta, alpha/beta,
alpha and beta, multi-domain proteins (alpha and
beta), membrane and cell surface proteins, and
small proteins), only two classes (all-alpha and all-
beta) are not expected to share any secondary
structure elements and therefore are not expected
to be similar structurally. Because similar second-
ary structure will affect the allowed amino acids in
a particular region, these preferences may be
detected by pro®le-pro®le comparison.

Two quality measures are used to assess the
effectiveness of parameters and evaluate the per-
formance based on this hierarchy. The ®rst, which
is applied to each family individually, is the num-
ber of true family-family relationships that are
detected before the ®rst false connection occurs (as
above). The de®nition of a false connection is
subtle. One may say that any relationship besides
true family-family relationship is false. Some may
argue that relationships between families that
belong to the same fold may as well be true. We
de®ne a relationship between two protein families
to be a true relationship if both families belong to
the same superfamily, a possible relationship if
both families belong to the same SCOP class, an
error if one protein is all-alpha and the second is
all-beta, and suspicious otherwise. For each family
in the test set we calculated the pro®le-pro®le simi-
larities with all other 1286 families. The results are
sorted by signi®cance (E-value) and we count the
number of family-family relationships that are
detected before the ®rst possible, suspicious and



Table 1. Performance evaluation results

Number of true family-family relationships detected by:

Type of first false-connection Gapped-BLAST IMPALA PSI-BLAST prof_sim

Different superfamily, same class 163 168 189 (205) 231
(``possible'' relationship)

Different class 174 189 205 (221) 253
(``suspicious'' relationship)

Alpha$ Beta 709 810 690 (694) 1586
(``error'' relationship)

Methods compared: Gapped-BLAST, PSI-BLAST, IMPALA and pro®le-pro®le similarity (prof_sim). For each method, the number
of true relationships that are detected before the ®rst false connection occurs, is given. Results are given for the following types of
false connections: possible, suspicious and error (see the text for details).
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error relationship is reported{. The results,
summed for all families in the test set are summar-
ized in Table 1.

For comparison we provide the same numbers
for Gapped-Blast, PSI-BLAST and IMPALA.53 For
PSI-BLAST we use the family pro®les to search the
set of 1287 seed proteins of all 1287 protein families
in our benchmark. For each input pro®le, we run
PSI-BLAST only for one iteration to score the seed
sequences. This is essentially a single iteration
BLAST search (the iterative phase of PSI-BLAST is
in creating the pro®le, as described above). There-
fore, the statistical estimates should be as reliable
as in a standard BLAST search. IMPALA is differ-
ent, since it compares a sequence with a library of
pro®les; it uses statistical estimates that are better
than those used by PSI-BLAST as well as a rigor-
ous dynamic programming algorithm. Our library
of pro®les contains all 1287 family pro®les (see
above). For each family in the test set the query
sequence is selected to be the same seed sequence
that was used to generate the pro®le for this
family.

When comparing the performance of our meth-
od to that of PSI-BLAST we tried to focus on the
comparison method, while keeping all other com-
ponents of the evaluation procedure identical for
all methods compared. In particular, the input (the
pro®le) was ®xed. Iterative PSI-BLAST may intro-
duce other, related or unrelated sequences in the
pro®le, and the input pro®le is changing from one
iteration to the next one, thus violating the setup of
the experiment, and creating a bias. Under this set-
ting it is harder to compare PSI-BLAST and prof_-
sim and draw decisive conclusions from the
results, since the two methods do not use the same
input models anymore. Nevertheless, we have also
tried iterative PSI-BLAST with up to ten iterations.
There is an improvement in PSI-BLAST perform-
ance (see third column in Table 1, numbers in par-
entheses), however, prof_sim is still more sensitive,
even without incorporating the information from
the sequences that were not part of the original
{ Our tests show that the results are almost identical
if we consider an erroneous match between families as
being to a different fold rather than to a different
superfamily
input pro®le and were integrated into the PSI-
BLAST pro®le in subsequent iterations. Using
prof_sim with the updated pro®le that is generated
in the last iteration of PSI-BLAST before conver-
gence is expected to improve the performance of
prof_sim as well.

As Table 1 indicates, our program, prof_sim,
detects more true similarities in all tests (i.e. for all
possible types of ®rst false-connection). Especially
interesting is the case where the ®rst false connec-
tion is a connection between an all-alpha protein
and an all-beta protein. The number of true family-
family relationships that are detected before the
®rst such erroneous connection is reported is more
than twice the number of such relationships that
are detected by PSI-BLAST under the same test.
This fact clearly indicates that beyond pure
sequence similarity, pro®le-pro®le similarity
re¯ects the similarity in the secondary structure
content of protein families. The preferences for
speci®c types of amino acids in every position that
are encoded in the pro®le representation, are
strongly correlated with the characteristic second-
ary structure in that position. Different secondary
structures are likely to induce different preferences
which differ markedly between secondary struc-
tures such as beta strands and alpha helix, thus
resulting in a low or negative similarity score for
the corresponding distributions. This information
is not accounted for when comparing a sequence
with a sequence or a pro®le with a sequence.

The E-value that is associated with a similarity
score is usually used to set a threshold above
which similarities are suspected to re¯ect true
relationships. Table 2 lists the number of true
relationships that are detected by each of the four
methods tested, with E-value 40.1 (one random
match per ten searches, on average). As Table 2
suggests, compared to all other methods, more
true relationships are detected by prof_sim with
E-value 40.1, whereas less errors and suspicious
connections are reported (e.g. 166 true relation-
ships and 21 suspicious connections are reported
with prof_sim as opposed to 146 true relationships
and 31 suspicious connections with PSI-BLAST).

The second quality measure is the receiver oper-
ating characteristic (ROC), which is a common way
of assessing sensitivity and selectivity. Given a



Table 2. Performance evaluation results

Number of relationships with E-value40.1 detected by:

Relationship-type Gapped-BLAST IMPALA PSI-BLAST prof_sim

Same superfamily 116 115 146 166
(true relationship)

Same fold 0 0 3 1
(``possible'' relationship)

Same class 18 14 17 14
(``possible'' relationship)

Different class 31 20 31 21
(``suspicious'' relationship)

Alpha$ Beta 1 1 1 0
(``error'' relationship)

Total (with E-value 4 0.1) 166 150 198 202

For each method, the number of true, possible, suspicious and error relationships that are detected with E-value 4 0.1 is reported.
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sorted list of hits, the ROC curve plots the number
of true positives that are detected as a function of
the number of false positives. In Figure 6 we plot
the ROC50 curves for BLAST, IMPALA, PSI-
BLAST and prof_sim. To plot this curve for a
speci®c method, we ®rst sort the scores of all pair-
wise family-family comparisons by their E-value
and then count the number of true positives that
are detected until 50 errors occur. A true positive is
de®ned as a match between families within the
same superfamily; all other types of connections
are de®ned as false positives. The idea behind this
plot is that in scanning a database search results
one may be willing to overlook few errors, if
additional meaningful similarities can be detected.
The area under the curve can be used to compare
the overall performance of different methods. The
distribution of connections and the area under the
ROC curves are given in Table 3. From those
results it is clear that the relative improvement of
prof_sim with respect to PSI-BLAST is as signi®cant
Table 3. Performance evaluation results

Number of

Relationship-type Gapped-BLAST IMPAL

Same superfamily 116 120
(true relationship)

Same fold 0 0
(``possible'' relationship)

Same class 18 21
(``possible'' relationship)

Different class 31 28
(``suspicious'' relationship)

Alpha$ Beta 1 1
(``error'' relationship)

Total 166 170
E-value 0.1 0.14
ROC area 5155 5322 (3.

For each method, we report the number of true, possible, suspiciou
tions occur (a false connection is everything but a true relationship)
the area under the ROC plot, with the relative improvement with re
of relationships that are detected with Structal.
as the relative improvement of PSI-BLAST with
respect to BLAST.

Note that the E-value at which the 50th error
occurs is about 0.1 for BLAST, PSI-BLAST (Table 3),
and 0.14 for IMPALA and prof_sim. By de®nition, a
search with a threshold E-value of 0.1 will yield
one erroneous similarity per ten searches, on aver-
age. Since we repeat the search 456 times, we may
expect as many as 46 erroneous similarities (dis-
tributed between the 456 searches). Indeed, the
results for BLAST, IMPALA, PSI-BLAST and prof_-
sim are fairly consistent with this simple argument.
BLAST and PSI-BLAST report total of 50 suppo-
sedly false positives with E-value 40.1, a little bit
more than expected, but within a reasonable mar-
gin (Table 3). The statistical estimates of IMPALA
and prof_sim are more conservative. The 50th error
is detected with E-value of 0.14, while with this
E-value we should have expected 456 � 0.14 � 64
false positives. The advantage of this is that it
decreases the chances of detecting chance similarity
with E-value <0.1. The agreement of the statistical
relationships detected by:

A PSI-BLAST prof_sim Structal

146 173 355

2 1 45

17 18 5

30 30 0

1 1 0

196 223 405
0.1 0.14 4.93e-07

3 %) 6335 (23 %) 7266 (41 %) 13667 (165 %)

s and error relationships that are detected until 50 false connec-
. Also given are the E-value at which the 50th error occurs, and
spect to BLAST in parentheses. The last column lists the number



Figure 6. ROC50 curves. A true positive is de®ned as
a connection between families within the same super-
family. Note that the relative improvement of prof_sim
with respect to PSI-BLAST is comparable to the relative
improvement of PSI-BLAST with respect to BLAST (see
also Table 3).
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estimates of IMPALA and prof_sim indicates that
our statistical estimates are reliable.

There is another factor to consider when asses-
sing the performance. In the SCOP database,
there is a great variation in the number of
families in a superfamily, and larger superfami-
lies may dominate the evaluation results. To ver-
ify that our results are not biased toward the
larger superfamilies, we repeated the calculations
with normalized counts. Two normalization
schemes were used. In the ®rst scheme, we nor-
malize the counts (number of families detected)
by the total number of related families in the
superfamily. The second scheme, we normalize
the counts by the total number of pairwise
relationships in the superfamily. With the ®rst
normalization each superfamily with n families
can add n at the most to the total count. With
the second normalization, each superfamily can
add one at the most to the total count. Without
any normalization each superfamily can add up
to n(n ÿ 1) to the count. All schemes gave the
same qualitative results: the relative improve-
ment of prof_sim over PSI-BLAST is at least as
large as the relative improvement of PSI-BLAST
over BLAST.

It did not escape our attention that a few sup-
posedly false positives are ranked by prof_sim
higher than by PSI-BLAST. Consequently, when
averaged over all families, PSI-BLAST (Figure 6)
detects more true similarities than prof_sim up to
eight false positives, but then prof_sim takes the
lead and performs much better. We took a closer
look at the ®rst ten false positives. These simi-
larities are intriguing. Four of these are between
families that are classi®ed to the same class and
three of these are supported by signi®cant struc-
tural similarities (when using the pro®le-pro®le
alignment). Another four agree on about 50 % of
their secondary structure elements at the level of
the amino acid. Therefore we strongly believe
that some of these similarities actually re¯ect
true similarities (for a more detailed analysis, see
below).

The last column in Table 3 lists the number of
family-family relationships that are detected with
Structal using the same criteria. These numbers
provide an upper bound on the maximal sensi-
tivity that we should expect with sequence-based
methods. Note that most allegedly false structural
similarities are between families with the same
fold, with a few from the same class. This is not
surprising as structural similarities are common
between families that adopt the same fold, and
even between families from the same class. These
similarities are rarely due to a common evolution-
ary origin, yet they may imply related biological
functions. By relaxing the de®nition of a false posi-
tive, many more signi®cant structural similarities
are detected between families of the same super-
family, fold and class. For example, when a true
positive is de®ned as a relationship between
families from either the same superfamily or the
same fold, 613 relationships are detected from the
®rst type and 215 relationships are detected from
the second type before the 50th error occurs (most
of those errors are between families within the
same class). The improvement in performance for
the sequence-based methods is not as signi®cant.

Alignment accuracy

Our goal in developing the pro®le-pro®le com-
parison algorithm was to devise a sensitive as well
as an accurate algorithm, where accuracy is
measured in terms of alignment accuracy. Optimiz-
ing the accuracy of sequence alignment with
respect to structural alignments is especially
important since one can expect that such optimized
alignments will provide good initial seeds for
reliable 3D models, and they can help direct site-
speci®c experiments.

We compared the accuracy of the prof_sim align-
ments with the accuracy of BLAST, IMPALA and
PSI-BLAST, using the same methodology that is
described above. The results are shown in Figure 7.
Note that prof_sim performed better in almost all
tests, producing more accurate alignments, with
smaller shift value, larger coverage and a higher
percent of correctly aligned residues.

Detecting Interesting Similarities
between Protein Families

We were curious to see what kind of similarities
are missed by PSI-BLAST and detected by prof_sim
and vice versa. Of all true family-family relation-
ships that are detected by PSI-BLAST with E-
value 4 1, 26 are missed by prof_sim (i.e. reported
with E-value > 1). Of these, ten are reported by



Figure 7. Accuracy of sequence-based alignments. For each sequence-based method (BLAST, IMPALA, PSI-
BLAST and prof_sim) we measured the quality of the alignments with respect to structural alignments that were gen-
erated using Structal. Several indices of quality were used: (a) Naligned; (b) Qshift; (c) Nagreement; (d) Qmodeler; (e) Qdevelo-

per; (f) Qcombined. See Optimization of Parameters for details.
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PSI-BLAST with E-value 4 0.1 (the threshold
de®ned by the ROC50 curve; see Table 3). The
most signi®cant hit of those is between SCOP
families 1.110.1.2 and 1.110.1.1 (ARM repeat super-
family). PSI-BLAST reports this similarity with E-
value of 2e-05 (see Figure 8). Our method, prof_sim,
reports a slightly longer similarity with E-value of
5.8. The percent identity in this alignment (12 %) is
much lower than the percent identity in the PSI-
BLAST alignment (24 %). Strikingly, this alignment
corresponds to a better match in terms of structure:
aligning both structures based on the PSI-BLAST
and the prof_sim alignments, gives RMS values of
5.7 AÊ and 4.1 AÊ , respectively (Figure 8). This indi-
cates that prof_sim produces alignments that are
driven by structural similarities more than other
sequence-based methods. The second most signi®-
cant miss is between SCOP families 1.97.4.3 and
1.97.4.2 (terpenoid cylases/protein prenyltrans-
ferases superfamily). It is reported by PSI-BLAST
with E-value of 9e-04 and corresponds to structural
similarity with RMS value of 7.0 AÊ . Again, prof_sim
reports a different (tough shorter) alignment, with
E-value 7.1, but with RMS value of 4.1 AÊ . The



Figure 8. PSI-BLAST and prof_sim alignment of SCOP families 1.110.1.2 and 1.110.1.1. The SCOP identi®ers of
the seeds are d1b3ua and d1qgra, respectively. The prof_sim alignment is more accurate in terms of structure (lower
RMS).
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other similarities are reported by PSI-BLAST with
E-values between 0.001 and 0.1. Our program
reports similarities between the other eight family
pairs with E-values that range between 1.3 and
10.8. In three cases prof_sim reports a fragment of
the same alignment reported by PSI-BLAST, and in
the other ®ve cases prof_sim reports an alignment
which differs from the PSI-BLAST alignment
(though usually shorter). However, the improve-
ment in the RMS value is signi®cant. In ®ve out of
the eight pairs, the RMS values of the PSI-BLAST
alignments ranges between 6.7 and 13.2 while the
prof_sim alignments have RMS values between 2.06
and 6.4 (improvement ranges between 1.5 AÊ and
10.5 AÊ ). In one case both alignments have high
RMS values (though prof_sim alignment improves
the RMS from 13.2 to 12.45), and in two other
cases both have low and almost the same RMS
values (within 0.22 AÊ ), in one case the PSI-BLAST
alignment is longer, and in the other case the
prof_sim alignment is longer.

There are 95 true family-family relationships for
which prof_sim reports an alignment with
E-value 4 1 while PSI-BLAST miss them. Forty
alignments are reported with E-value 4 0.14 (the
threshold as de®ned by the ROC50). The most sig-
ni®cant hit has an E-value of 2.7e ÿ 04. Of these,
18 are reported by PSI-BLAST with E-value
between 1 and 10, and in three more cases PSI-
BLAST reports shorter similarities with E-values
42, 49 and 259. All the rest, 19 pairs, are not
detected with
E-value 4 500. Five examples are shown in
Figure 9; they correspond to alignments with RMS
values between 1.7 AÊ and 5.9 AÊ .

In all other cases both methods reported a simi-
larity usually with a different signi®cance value.
Those differences are expected due to the different
statistical estimates or different alignments. In
most cases the same or almost the same alignments
are detected with prof_sim but because of the more
conservative statistical estimates of prof_sim they
are sometimes reported as less signi®cant. In other
cases prof_sim reports a different alignment.

An interesting case of homology that is not
easily detected by sequence analysis methods is
the actin/kinase/hsp70 homology. These three
families share the same fold and are considered as
homologous families.54 In SCOP, the actins and
heat shock proteins are classi®ed into the same
family (designated 3.50.1.1). The mammalian type I



Figure 9. Signi®cant similarities that are detected by prof_sim but missed by PSI-BLAST. The SCOP identi®ers of
the seeds: d1aoic (1.23.1.1); d1a7w (1.23.1.2); d1aj5a (1.41.1.7); d4icb (1.41.1.1); d1dcfa (3.16.2.2); d3chy (3.16.2.1);
d1cqxa3 (3.18.1.4); d1fnc_2 (3.18.1.1); d1maac (3.64.1.1); and d1jkmb (3.64.1.2).
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hexokinase is classi®ed into family 3.50.1.2 and the
glycerol kinase is classi®ed to 3.50.1.3.

None of these similarities are detected by
BLAST. PSI-BLAST detects the similarity between
3.50.1.1 and 3.50.1.3 with E-value of 4.9 (third
match after two false positives). prof_sim detects
this similarity with E-value of 0.31. This is the ®rst
match and there are no false positives. Moreover,
the prof_sim alignment is longer than the PSI-
BLAST alignment by 33 amino acid pairs.
When the seed sequence of family 3.50.1.3 is
used as a query, PSI-BLAST misses the similarity
with 3.50.1.1 (up to E-value of 500), while prof_sim
detects a similarity with E-value of 1.0 (it is the
second match after one false positive). Interest-
ingly, the false positive (d2dik_3, family 4.121.1.5)
is classi®ed as a member of another class (class 4
of a � b proteins with segregated alpha and beta
regions, while family 3.50.1.3 consists of a/b pro-
teins), but both share similar secondary structure
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elements, and to some extent, similar arrangements
of these elements. None of the methods detect the
similarity with family 3.50.1.2 as signi®cant.
Further tuning and integration of additional infor-
mation (see Discussion) is probably needed to
detect this similarity.

Analysis of errors

The SCOP classi®cation is an excellent resource,
which is based on extensive expert knowledge.
Nonetheless, one should keep in mind that the
de®nitions of the family/superfamily/fold levels
in the SCOP hierarchy are based in large part on
observations made by human experts, rather than
on a quantitative measure. One may argue that
this hierarchy is biased by human perceptions, and
does not truly re¯ect nature hierarchy. In other
words, the de®nitions of domains, folds and
classes do not necessarily conform to ``Nature's
de®nitions''. Therefore, any assessment using
SCOP may be biased due to errors in that reference
classi®cation.

To see if some interesting similarities might have
been missed by SCOP experts, we checked the
most signi®cant similarities between families from
different folds. Most of the suspicious connections
are due to similarity along a relatively small
substructure (few common secondary structure
elements). Such similarities are often observed
between proteins from different SCOP classes and
are not necessarily false similarities. Such simi-
larities are usually too short to maintain the same
topology, and within the context of the whole pro-
tein structure they may get different interpret-
ations.

Out of the ®rst 50 errors (see Table 3), nine are
relatively short fragments (average length of 30)
with very high agreement in secondary structure
content along the aligned residues (at least 70 %
per alignment, and 83 % on average). Additional
11 alignments (with average length of 88) agree on
more than 50 % of the aligned residue in terms of
the secondary structure content. Therefore, we
believe that at least some of the supposedly false
positives are indeed true relationships.

Discussion

With the rapid increase in the number of
sequences that cannot be characterized by existing
tools for sequence analysis, there is a growing need
for more powerful tools that can detect weak but
signi®cant sequence similarities. The latest gener-
ation of iterated search methods, such as PSI-
BLAST improved sensitivity of sequence analysis
signi®cantly.55 Yet, the vast majority of remote
relationships cannot be detected by these methods.

Here, we have presented a new tool for pro®le-
pro®le comparison that can be used to detect such
weak relationships between protein families. What
distinguishes sequence-sequence comparison from
pro®le-pro®le comparison is the scoring scheme
used to assess the similarity/dissimilarity of two
``atomic'' objects in the alignment (pairs of amino
acids in sequence-sequence alignment and pairs of
probability distributions in pro®le-pro®le compari-
son). The power of the pro®le-pro®le comparison
lies in the de®nition of those similarity scores. The
information that is coded in the multiple alignment
that was used to generate the pro®le can decipher
ambiguities or insigni®cant similarities that are fre-
quently observed in sequence-sequence compari-
son, and a sensitive scoring scheme that is wisely
designed can help detect those subtle similarities.
Our scoring scheme was designed to obtain maxi-
mal sensitivity by using an information theory
based measure of similarity between probability
distributions. The signi®cance of the pro®le-pro®le
similarity scores is assessed using the same statisti-
cal framework as for sequence analysis, and
extreme value distributions are ®tted to the empiri-
cal distributions.

A collection of protein families from the SCOP
database is used as a benchmark. This benchmark
provides extensive test of the selectivity, sensitivity
and accuracy of the new method we propose. Our
tests show that this tool outperforms pairwise com-
parison algorithms such as BLAST, as well as the
more powerful iterated PSI-BLAST (surprisingly,
IMPALA did not perform as well as PSI-BLAST).
The relative improvement of prof_sim over to PSI-
BLAST is the same order of magnitude or even lar-
ger than the relative improvement of PSI-BLAST
over BLAST. Therefore, we believe that the pro®le-
pro®le measure of similarity can be used to detect
weak relationships between protein families that
have diverged much. Our method for parameter
selection is based on a two-phase optimization pro-
cedure. This procedure is especially relevant where
there are several sets of parameters that perform
fairly well using one criterion (such as classi®cation
quality), but some may perform poorly when con-
sidering some other criterion (such as alignment
accuracy). As our method was also optimized to
produce alignments in a very good agreement with
structural alignments, it had higher accuracy than
all other methods, and can be expected to produce
better three-dimensional homology models.

In this work we compare our method to PSI-
BLAST. Of all publicly available software, PSI-
BLAST is an advanced method and is probably the
most popular program used today to compare pro-
tein sequences. There are other methods that are
used via publicly accessible web-servers. The most
notable of these include: PDB-BLAST and FFAS
from Godzik's group;11 SAM-T99 from Karplus'
group;12 INBGU from Fischer's group;13 Gen-
THREADER Jones';14 and 3D-PSSM from Stern-
berg's group.15

While these servers are ideally suited for use in
blind prediction schemes like critical assessment of
structure prediction (CASP), they cannot be easily
compared with the present method as there is no
way to know exactly what known relationships are
built into the server. Therefore, it is hard to predict
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how well our method would perform in CASP.
Moreover, in the CASP meeting, methods were
ranked based on the quality of the model they
generated, and many methods used optimization
procedures to optimize the position of side-chains
and gaps, or were manually calibrated.

Unfortunately, our method was not available in
time to be tested at CASP4, which closed on Sep-
tember 2001. We recognize that fact that our use of
PSI-BLAST and pro®le comparison is in fact rather
close to the service provided by the FFAS server.11

This server performed well at CASP and we
believe that our method performs as well{. We
intend to convert our prof_sim method to a web-
based server so that it can be tested both at CASP5
to be held in 2002 as well as by the automatic ser-
ver testing schemes like LiveBench.13

We have integrated our method in a large-scale
effort to map the protein space and create hierarch-
ical organization of protein families and superfami-
lies (the BioSpace system35). In this study a multi-
stage analysis was carried that ®rst identi®ed
structure-based clusters (clusters with structural
representatives) and sequence-based clusters (clus-
ters with no structural representative). Clusters are
compared using either a structure metric (when 3D
structures are known) or our pro®le-pro®le metric.
These scores are used to de®ne a uni®ed and con-
sistent metric between all clusters, and clusters are
organized in a meta-organization of super-clusters,
using the uni®ed metric. Many of the super-clus-
ters contain both structure-based clusters and
sequence-based clusters, due to cluster similarities
that were detected only by the pro®le-pro®le
metric. Based on this meta-organization we can
infer plausible conformations for families, which
were not structurally characterized, and are clus-
tered into the same super-cluster as a structure-
based cluster. In some cases we can also provide
hints about the possible functionality of the family.
We, therefore, believe that this tool can extend
structure and function prediction beyond what is
possible with current means of sequence analysis.

The disparity in performance between sequence-
based methods and the structure-based method (as
in Table 3) challenges for future developers of
sequence-based methods. Further improvements of
{ We could not implement their method, since we
could not reproduce the parameters used by Rychlewski
et al.11 However, preliminary results suggest that the
correlation scores used in FFAS to compare probability
distributions are less sensitive than our measures, which
are based on information theory principles. Speci®cally,
we calculated the distributions of correlation scores of
pro®le columns for different column types (the same
way as in Figure 2). According to these distributions
(not shown) the correlation scores are less successful in
distinguishing related columns from columns which are
likely to be unrelated. In general the distributions highly
overlap, and the tail of the second distribution falls well
within the ®rst distribution. We believe that this may
affect the performance signi®cantly.
the pro®le-pro®le comparison method should con-
sider the topology of the protein, if its structure is
known, or the propensity of amino acids to be part
of loops, alpha helices or beta strands. The propen-
sities of amino acids to form loops would be
especially useful as it can be used to assign vari-
able gap penalties. These enhancements will be
integrated in future versions of our method (Yona
& Yeh, work in progress).
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